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Compression Members

Following subjects are covered:
Introduction
Column theory
Width/thickness limit
C l d i AISCColumn design per AISC
Effective length

Reading:
Chapters 4 of Segui
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AISC Steel Manual Specification Chapters B (Design 
Requirements) and E (Design Members for Compression)

Introduction
Compression members are structural elements that are 
subjected only to compression forces, that is, loads are 
applied along a longitudinal axis through the centroidapplied along a longitudinal axis through the centroid 
of the cross-section.
In this idealized case, the axial stress f is calculated as

Note that the ideal state is never realized in practice
A

Pf =

Note that the ideal state is never realized in practice 
and some eccentricity of load is inevitable. Unless the 
moment is negligible, the member should be termed a 
beam-column and not a column, where beam columns
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beam column and not a column, where beam columns 
will be addressed later.

Compression Members (cont.)
If the axial load P is applied slowly, it will ultimately 
become large enough to cause the member to become 
unstable and assume the shape shown by the dashed line. 
The member has then buckled and the corresponding load 
is termed the critical buckling load (also termed the Euler 
buckling load)buckling load).
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Compression Members (cont.)
The differential equation giving the deflected shape of an 
elastic member subject to bending is

M = P y

2 Pyd (4.2)

where x is a location along the longitudinal axis of the

02 =+ y
EI
P

dz
yd

where x is a location along the longitudinal axis of the 
member, y is the deflection of the axis at that point,      
M (= P y) is the bending moment at that point, and other 
terms have been defined previously
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terms have been defined previously. 

Compression Members (cont.)
The latter equation is a linear, second-order ordinary 
differential equation with the solution
y=Acos(cx) + Bsin(cx)y=Acos(cx) + Bsin(cx)
where A and B are constants and c2=Pcr/EI. 
The constants are evaluated by applying the boundaryThe constants are evaluated by applying the boundary 
conditions y(0)=0 and y(L)=0. This yields A=0 [BC 1] and 
0=B sin(cL) [BC 2]. 
F t i i l l ti (th t i i l l ti i B 0)For a non- trivial solution (the trivial solution is B=0), 
sin(cL)=0, or cL = 0, π, 2π, 4 π ,... = nπ and
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Compression Members (cont.)

Different values of n correspond to different buckling 
modes. A value of n=0 gives the trivial case of no load; 
n=1 represents the first mode n=2 represents then 1 represents the first mode, n 2 represents the 
second mode, etc. 
For the case of n = 1, the lowest non-trivial value of the 
buckling load is 2buckling load is

(4.3)
the radius of gyration r can be written as I=Agr2

2

2

L
EIPcr

π
=

gy g
Then the critical buckling stress can be re-written as

(4 4)2

2
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E

A
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(4.4)
where L/r is the slenderness ratio.

2)/( rLAg
cr

Compression Members (cont.)
The above equations for the critical buckling load (EulerThe above equations for the critical buckling load (Euler 
buckling load) were derived assuming

A perfectly straight column
Axial load with no eccentricityAxial load with no eccentricity
Column pinned at both ends

If the column is not straight (initially crooked), bending 
ill d l i h l Si il l if h i lmoments will develop in the column. Similarly, if the axial 

load is applied eccentric to the centroid, bending moments 
will develop. 
The third assumption is a serious limitation and other 
boundary conditions will give rise to different critical loads. 
As noted earlier, the bending moment will generally be a 
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, g g y
function of z (and not y alone), resulting in a non-
homogeneous differential equation. 



Compression Members (cont.)

The above equation does not give reliable results for stocky 
columns ( say L/r <40) for which the critical buckling stress 
exceeds the proportional limit The reason is that theexceeds the proportional limit. The reason is that the 
relationship between stress and strain is not linear.

For stresses between theFor stresses between the 
proportional limit and the yield 
stress, a tangent modulus Et is 

d hi h i d fi d th lused, which is defined as the slope 
of the stress–strain curve for values 
of f between these two limits.
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Compression Members (cont.)

Such a curve is seen from tests of stocky columns and 
is due primarily to residual stresses.  

fIn the transition region Fpl < f≤Fy, the critical buckling 
stress can be written as

(4 5)2EP π (4.5)

But this is not particularly useful because the tangent 

2)/( rKL
E

A
PF t

g

t
cr

π
==

p y g
modulus Et is strain dependent. Accordingly, most 
design specifications contain empirical formulae for 
inelastic columns
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inelastic columns.

Compression Members (cont.)
The critical buckling stress is often plotted as a function of 
slenderness as shown in the figure below. This curve is 
called a Column Strength Curve. From this figure it can be g g
seen that the tangent modulus curve is tangent to the Euler 
curve at the point corresponding to the proportional limit.
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Column Design per AISC  
The basic requirements for compression members 
are covered in Chapter E of the AISC Steel Manual. 
The basic form of the relationship isThe basic form of the relationship is
Pu ≤ ϕcPn = ϕc(AgFcr) (AISC E3-1)
where ϕc is the resistance factor for compression 

b ( 0 9) dmembers (=0.9) and 
Fcr is the critical buckling stress (inelastic or elastic) 
and Fe is the elastic buckling stress  e g

(AISC E3-4)
2

2

)/(KL
E

FF cre

π
==
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Column Design per AISC (cont.)

The nominal strength Pn of rolled compression 
members (AISC-E3) is given by
P = A FPn = AgFcr

For inelastic columns or 

(AISC E3 2 & E7 2)( )FQF QFF /6580
yQF

E
r

KL 71.4≤ ye QFF 44.0≥

(AISC E3-2 & E7-2)

For elastic columns or 

( ) y
FQF

cr QFF ey /658.0=

yQF
E

r
KL 71.4> ye QFF 44.0<

(AISC E3-3 & E7-3)

yQ

ecr FF 877.0=
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Q =1 for majority of rolled H-shaped section (Standard W, S, and 
M shapes); Others are covered later (Segui Example 4.2 for Q=1)

Stability of Plate
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S biliStability 
of Plateof Plate 
(cont.)
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Column Design per AISC (cont.)

Flange and web compactness
For the strength associated with a buckling mode to 
develop local buckling of elements of the cross sectiondevelop, local buckling of elements of the cross section 
must be prevented. If local buckling (flange or web) 
occurs,

Th ti i l f ll ff tiThe cross-section is no longer fully effective.  
Compressive strengths given by Fcr must be reduced

Section B4 of the Steel Manual provides limiting values of 
d h h k (d d ) h hwidth-thickness ratios (denoted λr ) where shapes are 

classified as
Compact
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Noncompact
Slender



Column Design per AISC (cont.)

AISC writes that if  exceeds a threshold value λr , the 
shape is considered slender and the potential for 
local buckling must be addressedlocal buckling must be addressed.
Two types of elements must be considered

Unstiffened elements - Unsupported along oneUnstiffened elements Unsupported along one 
edge parallel to the direction of load
(AISC Table B4.1, p 16.1-16)
Stiffened elements - Supported along both edges 
parallel to the load
(AISC Table B4 1 p 16 1 17)
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(AISC Table B4.1, p 16.1-17)

Column Design per AISC (cont.)
The figure on the following page presents compression 
member limits (λr) for different cross-section shapes 
that have traditionally been used for designthat have traditionally been used for design. 
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Column Design per AISC (cont.)

For 
unstiffened 
elements –
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Column Design per AISC (cont.)

For 
stiffenedstiffened 
elements -
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Column Design per AISC (cont.)
λ > λr in an element of a member, the design strength 
of that member must be reduced because of local 
buckling. The general procedure for this case is as g g
follows:
Compute a reduction factor Q per E7.1 (unstiffened 
compression elements Qs) or E7.2 (stiffenedcompression elements Qs) or E7.2 (stiffened 
compression elements Qa).
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Reduction Factor Q
Unstiffened compression elements: Compute a reduction 
factor Qs per E7.1
Stiffened compression elements: Compute a reductionStiffened compression elements: Compute a reduction 
factor Qa per E7.2

Unstiffened 
compression 
element
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Reduction Factor Q (cont.)
SC (S iff d l )AISC-E7.1 (Stiffened elements)
For other uniformly compressed elements:

⎤⎡
≤ b (AISC E7-18) ( ) ⎥

⎥

⎦

⎤

⎢
⎢

⎣

⎡
−=

f
E

t
bf

EtbE
38.00.192.1

f = Pu/Ag=ϕcQsFcr,column

Q A /A b t/(bt)Qa = Aeff/Agross = bEt/(bt)
where Aeff = Agross-Σ(b-bE)t
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Reduction Factor Q (cont.)
Design Properties

In computing the nominal strength, the 
following rules apply in accordance with AISC E7following rules apply in accordance with AISC-E7

For axial compression
1. Use gross area Ag for Pn=FcrAgg g n cr g
2. Use gross area to compute radius of gyration r for KL/r
For flexure:

1 Use reduced section properties for beams with flanges1. Use reduced section properties for beams with flanges 
containing stiffened elements

(cont…)
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(Segui Example 4.4 with reduction factor Q to check local buckling)



Reduction Factor Q (cont.)
Design Properties (cont.)

Since the strengths of beams do not include Q
factors relating to thin compression elements it isfactors relating to thin compression elements, it is 
appropriate to use section properties based on 
effective area

For beam columns:
1. Use gross area for Pn
2 Use reduced section properties for flexure involving stiffened2. Use reduced section properties for flexure involving stiffened 

compression elements for Mnx and Mny
3. Use Qa and Qs for determining Pn
4 For F based on lateral-torsional buckling of beams as
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4. For Fcr based on lateral torsional buckling of beams as 
discussed later in Beams, the maximum value of Fcr is QsFcr
when unstiffened compression elements are involved.
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AISC of Rolled Shape Columns
The general design procedure is:
1. Computer the factor service load Pu using all 

appropriate load combinationsappropriate load combinations
2. Assume a critical stress Fcr based on assumed KL/r
3. Computer the gross area Ag required from g

Pu/( ϕcFcr)
4. Select a section.  Note that the width/thickness λr

limitations of AISC Table B4.1 to prevent local p
buckling must be satisfied.
(cont…)
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(Segui Example 4.5 based on AISC Table 4-22 and Example 4.6 
based on AISC Table 4-1)

AISC of Rolled Shape Columns (cont.)

5. Based on the larger of (KL/r)x or (KL/r)y for the 
section selected, compute the critical stress Fcr.
C t th d i t th  P  F A f th6. Computer the design strength  ϕcPn =  ϕcFcrAg for the 
section.

7. Compare  ϕcPn with Pu. When the strength provided7. Compare  ϕcPn with Pu.  When the strength provided 
does not exceed the strength required by more than 
a few percent, the design would be acceptable.  
Otherwise repeat Steps 2 through 7Otherwise repeat Steps 2 through 7.

(Segui Examples 4.10 & 4.11 for rolled shape)
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(Segui Examples 4.10 & 4.11 for rolled shape)



Column Design per AISC (cont.)

Tables for design of compression members -
Tables 4.2 through 4.17 in Part 4 of the AISC Steel 
Manual present design strengths in axial compression 
for columns with specific yield strengths, for 
example, 50 ksi for W shapes. Data are provided for p , p p
slenderness ratios of up to 200. 
Sample data are provided on the following page for 

W14 hsome W14 shapes
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Column 
Design per 
AISC (cont )AISC (cont.)

W14 samples
(AISC LRFD p 4-21)
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Effective Length 
Consider the column that is pinned at one end 
(y(0)=y”(0)=0) and fixed against translation and 
rotation at the other end (y(0) y’(0) 0) The criticalrotation at the other end (y(0)=y’(0)=0). The critical 
buckling load is:

( )2

2EIPcr
π

=

Another case is fixed at one end (y(0)=y’(0)=0) and 

( )27.0 Lcr

free at the other end.  The critical buckling load is: 

2EIP π
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( )20.2 L
Pcr =

Effective Length (cont.)
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Effective Length (cont.)
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Effective Length (cont.)

The AISC Steel Manual
presents a table to aid 
in the calculation ofin the calculation of 
effective length. 
Theoretical and design 
values arevalues are 
recommended. The 
conservative design 
values shouldvalues should 
generally be used 
unless the proposed 
end conditions truly
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end conditions truly 
match the theoretical 
conditions.

Effective Length (cont.)

The AISC table 
presented earlier 

t l f thpresents values for the 
design load based on a 
slenderness ratio 
calculated using the 
minimum radius of 
gyration r Considergyration, ry . Consider 
now the figure shown.
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Effective Length (cont.)

For columns in moment-resisting 
frames, the tabulated values of K 
presented on Table C-C2.1 of p
AISC Steel Manual will not suffice 
for design. Consider the moment-
frame shown that is permitted to 
sway.
Columns neither pinned not fixed.
Columns permitted to sway.p y
Columns restrained by members 
framing into the joint at each end 
of the column
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Effective Length (cont.)

The effective length factor for a column along a selected 
axis can be calculated using simple formulae and a 
nomograph The procedure is as follows:nomograph. The procedure is as follows:
Compute a value of G, defined below, for each end 
of the column, and denote the values as GA and GB
respectively ( )LEI /Σ, respectively

Use the nomograph provided by AISC (and 

( )
( )beam

col

LEI
LEIG

/
/

Σ
Σ

=

g p p y (
reproduced on the following pages). Interpolate 
between the calculated values of GA and GB to 
determine K
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Effective Length (cont.)

38
AISC specifies G = 10 for a pinned support and G = 1.0 for a fixed support.

Effective Length (cont.)

The distinction between 
braced (sidesway  
i hibit d) d b dinhibited) and unbraced 
(sidesway inhibited)
frames is important, as p
evinced by difference 
between the values of K
calculated abovecalculated above.
What are bracing 
elements?
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Effective Length (cont.)
Above presentation assumed that all behavior in the 
frame was elastic. If the column buckles inelastically (λc ≤
1.5), then the effective length factor calculated from the1.5), then the effective length factor calculated from the  
alignment chart will be conservative. One simple strategy 
is to adjust each value of G using a stiffness reduction 
factor (SRF),factor (SRF), 

(4 13)

( )
( ) [ ]aelastic

beam

colt
inelastic G

LEI
LIE

G τ=
Σ
Σ

=
/
/

F (4.13)

Table 4-21 of the AISC Steel Manual, presents values for 
elasticcr

inelasticcrt
a F

F
E
E

,

,==τ
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, p
the SRF (AISC called τ ) for various values of Fy and 
Pu/Ag. (Segui Example 4.14)


