# **ENCE 455** Design of Steel Structures

### VIII. Simple Shear Connection

C. C. Fu, Ph.D., P.E. Civil and Environmental Engineering Department University of Maryland



### **Review Bolts and Welds**

Design bolt bearing strength ( $L_e \ge 1.5d$ ,  $s \ge 3d$ )

Design bolt shear strength – no threads in shear planes

 $\Phi R_{u} = 0.75(0.50F_{u}^{b})mA_{b}$ 

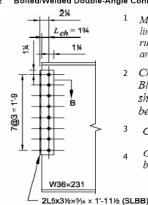
Design bolt shear strength – threads in shear planes

 $\Phi R_{..} = 0.75(0.40F_{..}^{b})mA_{b}$ 

Design bolt tensile strength

 $\Phi R_{ii} = 0.75(0.75F_{ii}^{b})A_{b}$ 

Design strength of the weld

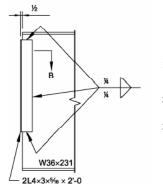

 $\Phi R_0 = 0.707 \text{wL}(\phi F_w) = 0.707 \text{wL}(0.75[0.6F_{FXX}]) = 0.32 \text{wLF}_{FXX}$ 

2

## **Double-Angle Connection**

Example II.A-1 All-Bolted Double-Angle Connection Example II.A-2 Bolted/Welded Double-Angle Connection

For bolted connection (AISC Tables 10-1 or -2)



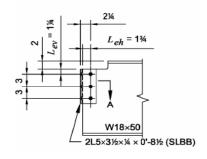

- Manual Table 10-1 includes checks for the limit states of bearing, shear yielding, shear rupture, and block shear rupture on the angles, and shear on the bolts.
- 2 Check the beam web for bolt bearing. Block shear rupture, shear yielding and shear rupture will not control, since the beam is uncoped.
- Check beam web for bolt bearing.
- Check supporting member flange for bolt bearing



### **Double-Angle Connection**

Example II.A-3 All-Welded Double-Angle Connection




### ded connection (AISC Table 10-3)

- Design the weld between the beam-web and the angle leg (welds A)
- Design the welds between support and the angle leg (welds B)
- Check minimum angle thickness



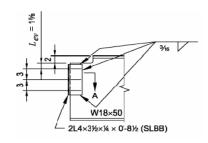
### Double-Angle Connection (coped)

Example II.A-4 All-Bolted Double-Angle Connection



### For all bolted connection (AISC Tables 10-1 or -2 w/ Tables 9-2, -3, & -4)

- Check bolt shear. Check angles for bolt bearing, shear yielding, shear rupture and block shear rupture
- Check beam web for bolt bearing, block shear rupture, shear yielding and shear
- Check supporting member flange for bolt
- Check block shear rupture


$$\phi R_n = \phi F_u A_{nt} U_{bs} + \min(\phi 0.6 F_y A_{gv}, \phi F_u A_{nv})$$

Check flexural rupture on the coped section Check local web buckling at the coped section Check shear yielding on beam web

7

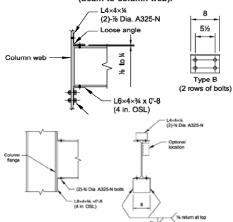
## Double-Angle Connection (coped)

Example II.A-5 Bolted/Welded Double-Angle Connection (beam-to-girder web)



### For bolted/welded connection (AISC Tables

- 1a Design the weld between the beam-web and the angle leg (welds A)
- 2a Check minimum angle thickness


Check shear rupture on beam web

6

### **Unstiffened Seated Connection**

3

Example II.A-12 All-Bolted Unstiffened Seated Connection (beam-to-column web).

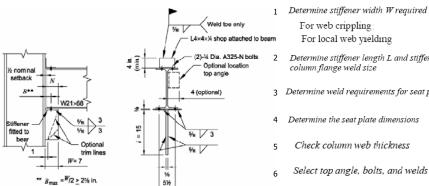


### For all bolted connection (AISC Table 10-5)

Check beam web

For local web yielding For web crippling.

- Check shear yielding and flexural yielding of angle. Check local yielding and crippling of beam web
- Check bolt bearing on the angle
- Check supporting column


### For bolted/welded connection (AISC Tables

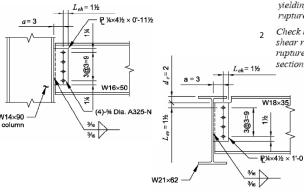
Check minimum angle thickness

### **Stiffened Seated Connection**

Example II.A-14 Stiffened Seated Connection (beam-to-column flange)

### For all welded connection (AISC Tables 10-7 or 8)




- For web crippling For local web yielding
- Determine stiffener length L and stiffener to column flange weld size
- 3 Determine weld requirements for seat plate
- 4 Determine the seat plate dimensions
- Check column web thickness
- Select top angle, bolts, and welds

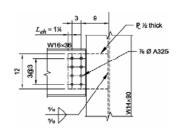
Example II.A-15 Stiffened Seated Connection (beam-to-column web)



# Single-Plate Connection

Example II.A-17 Single-Plate Connection (conventional – beam-to-column flange)




Example II.A-18 Single-Plate Connection (beam-to-girder web)

For single-plate connection (AISC Table 10-9)

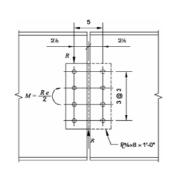
- Check bolt shear. Check plate for shear yielding, shear rupture, and biock shear rupture
- Check beam web for bolt bearing. Block shear rupture, shear yielding and shear rupture will not control for an uncoped

Single-Plate Connection

Example II.A-19 Extended Single-Plate Connection (beam-to-column web)



### For extended single-plate connection


- Determine the bearing strength of one bolt on the beam web
- Determine the strength of the bolt group
- Determine the maximum plate thickness Check flexural strength of the plate
  - Check shear yielding of the plate
- 4 Determine critical flexural stress in presence of shear stress, f,
- Check shear rupture of the plate
- 6 Check block shear rupture of the plate

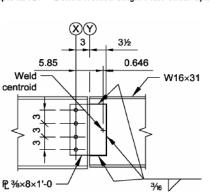
10

# 4

### Single-Plate Shear Splice

Example II.A-20 All-Bolted Single-Plate Shear Splice




### For all bolted shear spice

- Design the bolt groups
- Design splice plate
- 3 Check flexure of the plate
- 4 Check shear yielding of the plate
- 5 Check shear rupture of the plate
- 6 Check block shear rupture of the plate

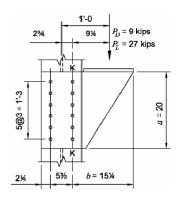
# 4

## Single-Plate Shear Splice

Example II.A-21 Bolted/Welded Single-Plate Shear Splice



- For welded shear splice
- Design the weld group
- Check shear rupture of beam web at the weld
- Design the bolt group
- Design splice plate
- 5a Check flexure of the plate
- Check shear yielding of the plate
- Check shear rupture of the plate
- Check block shear rupture of the plate


11

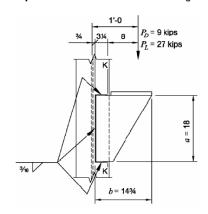
9



### **Bracket Plate Design**

Example II.A-22 Bolted Bracket Plate Design




### For bolt bracket plate

- Design the bolt groups
- Check bolt bearing
- Check flexure in the bracket plate
- Check local buckling of the bracket plate
- Check shear yielding of the bracket plate
- Check shear rupture of the bracket plate
- Check block shear rupture of the bracket plate

13

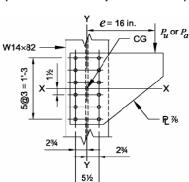
### **Bracket Plate Design**

Example II.A-23 Welded Bracket Plate Design



### For welded bracket plate

- Try a C-shaped weld
- Check flexure in the bracket plate
- Check local buckling of the bracket plate
- Check shear yielding of the bracket plate
- Check shear rupture of the bracket plate 5a
  - Check block shear rupture of the bracket plate


14



### **Eccentrically-Loaded Group**

Example II.A-24 Eccentrically-Loaded Bolt Group (IC method)

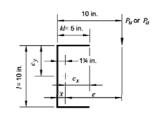
Example II.A-25 Eccentrically Loaded Bolt Group (elastic method)



### Elastic Method

(AISC Tables 7-7~14 for IC Method)

### For bolt group


- Direct shear force per bolt
- Additional shear force due to eccentricity 2
- Resultant shear force

### **Eccentrically-Loaded Group**

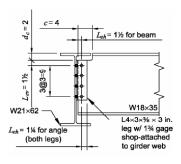
6a

Example II.A-26 Eccentrically-Loaded Weld Group (IC method)

Example II.A-27 Eccentrically-Loaded Weld Group (elastic method)



Elastic Method (AISC Tables 8-4~11 for IC Method)


For welded aroup

- Direct shear force per inch of weld
- Additional shear force due to eccentricity
- Resultant shear force



## **Single-Angle Connection**

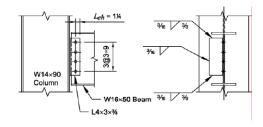
### All-Bolted Single-Angle Connection (beam-to-girder web)



### For all bolted single-angle connection (AISC Table 10-10)

- Design the bolts and angle
- Check shear yielding of the angle
- Check shear rupture of the angle
- Check block shear rupture of the angle
- Check flexure of the support-leg of the angle
- Check beam web for bolt bearing and block shear rupture.

17


### **Single-Angle Connection**

Example II.A-29

Bolted/Welded Single-Angle Connection (beam-to-column flange).

For bolted/welded single-angle connection (AISC Tables 10-10 or -11)

- Design single angle, bolts, and welds
- Check supported beam web
- Check support



18

# **Tee Connection**

Example II.A-30 All-Bolted Tee Connection (beam-to-column flange)

W16×50

WT5×22.5

For all bolted tee connection

- 1 Check limitation on tee stem thickness
- 2 Check limitation on bolt diameter for bolts through tee flange
- 3 Check bolt group through beam web for shear and bearing
- 4 Check shear yielding of the tee stem

W14~00

WT5×22.5

- Check block shear rupture of the tee stem
- Check bolt group through support for shear and bearing combined with tension due to
- Check design strength of bolts for tensionshear interaction
- Check bearing strength at bolt holes
- Check beam web for bolt bearing, block shear rupture, shear yielding and shear
- 10 Check supporting member web or flange for bolt bearing



W14×90

# **Tee Connection**

W16×50

### 1a Check limitation on tee stem thickness

For bolted/welded tee connection

- Design the welds connecting the tee flange to the column flange
- Check the stem side of the connection
- Check bolt group through beam web for shear and bearing
- Check shear yielding of the tee stem
- Check block shear rupture of the tee stem
- Check bolt group through support for shear and bearing combined with tension due to
- Check design strength of bolts for tensionshear interaction
- Check bearing strength at bolt holes
- 10a Check beam web for bolt bearing, block shear rupture, shear yielding and shear
- Check supporting member web or flange for bolt bearing

19

Example II.A-31 Bolted/Welded Tee Connection (beam-to-column flange)

W14×90

Section A